
Journal of Computational Physics 225 (2007) 74–99

www.elsevier.com/locate/jcp
An accelerated algorithm for 2D simulations of the
quantum ballistic transport in nanoscale MOSFETs

N. Ben Abdallah a, M. Mouis b, C. Negulescu a,*
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Abstract

An accelerated algorithm for the resolution of the coupled Schrödinger/Poisson system, with open boundary condi-
tions, is presented. This method improves the sub-band decomposition method (SDM) introduced in [N. Ben Abdallah,
E. Polizzi, Subband decomposition approach for the simulation of quantum electron transport in nanostructures, J. Com-
put. Phys. 202 (1) (2005) 150–180]. The principal feature of the here presented model consists in an inexpensive and fast
resolution of the Schrödinger equation in the transport direction, due to the application of WKB techniques. Oscillating
WKB basis elements are constructed and replace the piecewise polynomial interpolation functions used in SDM. This pro-
cedure is shown to reduce considerably the computational time, while keeping a good accuracy.
� 2006 Elsevier Inc. All rights reserved.
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1. Introduction

MOSFET size dimensions continue to decrease rapidly towards the sub-10 nm range. The interest for such
a scaling is multiple: more functionality, higher operating speeds, reduced power consumption. To support
this effort, it is of primary importance to develop modeling and simulation tools that are adequate for the
description of ultra small devices. The objective of this paper is the presentation of a very efficient and inex-
pensive method for the simulation of nanoscale MOSFET devices. This method was previously introduced by
the authors in a condensed form in [20].

The scaling of devices beyond a certain limit enhances the importance of some physical phenomena, with
correlated consequences on device modeling techniques. The electron transport becomes near-ballistic and
quantum effects, as interferences, tunneling and confinements, can no more be neglected. Quantum ballistic
transport models are thus adequate to describe what can be ultimately expected in these devices. The interested
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reader can find more physical details in [1,3,10,12]. There is a great amount of work dedicated to semiconduc-
tor device simulations, either by the non-equilibrium Green’s function formalism [11,16,17,26,27] or by a finite
element/difference resolution of the Schrödinger–Poisson system [4,5,8,13,18,22]. The approach presented in
this paper is based on the resolution of the self-consistent Schrödinger–Poisson equation with open boundary
conditions, which enable the current flow.

In previous works of Ben Abdallah and Polizzi [8], respectively Laux et al. [18], the Schrödinger–Poisson
equation is solved self-consistently via standard variational formulations in the whole definition/simulation
domain. The first approach uses the original QTBM boundary conditions [19], whereas the second one extends
these boundary conditions to simulate devices far from equilibrium. The disadvantage of these approaches is
that they are very time consuming due to the expensive resolution of the 3D or 2D Schrödinger equation. In a
recent work of Ben Abdallah and Polizzi [7], a sub-band decomposition method (SDM) was proposed to
reduce the numerical cost for the resolution of the 2D Schrödinger equation. The SDM method is based
on the fact that in modern devices the electron gas is confined in one or more directions and that consequently
the dimension of the propagation space is reduced. Hence the resolution of the Schrödinger equation in the
whole 2D domain is replaced by 1D eigenvalue problems in the confined (or transversal) direction and a sys-
tem of coupled 1D Schrödinger equations projected on the transport (or longitudinal) direction. It is impor-
tant to remark that the SDM method retains the coupling effects in both directions of space.

The goal of the present paper is to propose a new powerful model, further named SDM/WKB, which devel-
ops the SDM method to provide a relatively inexpensive way to solve the 2D Schrödinger equation. This new
method reduces once again considerably the simulation time by accelerating the resolution of the longitudinal
coupled 1D Schrödinger system through the use of WKB techniques. The WKB approximation, often called
also semi-classical approximation, is a powerful technique to treat problems involving two different scales. It is
used in [9] for the Helmholtz equation and in [15,25] for the Schrödinger equation with the objective to inves-
tigate the high frequency asymptotics (�h! 0) of the just mentioned equations. In the present work, however,
we are interested in an approximation method for the Schrödinger equation, suitable for fixed, arbitrary wave-
lengths and equally accurate independently on the Planck constant ⁄ and the electron energy E (see [23] for the
Helmholtz equation). Indeed, for slowly varying potentials this approximation is good not only for high fre-
quencies. In [6] the WKB approximation is used in this manner by Ben Abdallah and Pinaud for the 1D sim-
ulation of a resonant tunneling diode (RTD). The present paper combines the two methods, SDM and WKB,
with the objective to lower the numerical burden for two dimensional applications, as the MOSFET devices.

The principal idea is the following. The SDM method uses the conventional finite element approach to
solve the 1D Schrödinger equation in the transport direction. The ‘‘10 degrees of freedom per wave-
length’’-rule requires thus a refined mesh size in this direction to accurately approximate the highly oscillating
wave functions, which correspond to high injection energies. The original contribution of the SDM/WKB
method consists in replacing the linear or polynomial interpolation functions by more elaborated, oscillating
interpolation functions. These oscillating basis functions are determined by means of the WKB plane-wave
Ansatz and posses a frequency close to that of the unknown wave-function. Therefore, accurate results can
be obtained with much coarser grids, leading for this reason to a highly reduced simulation time.

The outline of this paper is the following. Section 2 starts by briefly presenting the SDM method, in order
to introduce afterwards the new SDM/WKB method, which is the core of this work. Section 3 compares
numerically (simulation time, accuracy) the two methods with a standard variational resolution method for
the Schrödinger equation. Moreover, it enumerates some interesting points concerning the implementation
of the SDM/WKB method. Finally, Section 4 is devoted to the discussion of the simulation results obtained
with the SDM/WKB method for several devices in order to validate the results from a physical point of view.
To keep this paper simple, we preferred to present the extensive mathematical and numerical analysis of this
model in a separate future work [2,21].

2. Description of the SDM/WKB model

The purpose of this section is to introduce the original 3D SDM/WKB transport model, developed for
the simulation of the ballistic quantum electron transport in nanoscale MOSFETs. This paper deals with
the stationary problem.
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Fig. 1. Schematic representation of the modeled device.
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The double-gate MOSFET, which has been used as a test structure for this numerical study, is schemati-
cally represented in Fig. 1. It is a symmetrical device, consisting in a Si-channel separated by thin SiO2 insu-
lator layers from the two gate contacts. A drain–source voltage VDS is applied to create an electron flow in the
x-direction, whereas a gate–source voltage VGS controls the conductivity of the Si-channel. Electrons are
injected from the source and the drain reservoirs. These two reservoirs are assumed to be in a thermal equi-
librium state, characterized by different Fermi energy levels.

The electron gas is supposed to be confined in the direction z. It is exactly upon this important feature, that
the SDM method is based. The confinement induces the discretization of the energy continuum and thus the
creation of energy-subbands in the transverse direction. The electron motion is allowed in the remaining two
directions. The y-direction is assumed to be translational invariant, such that the x-direction shall be consid-
ered as the transport direction. Because of the translational invariance in the y-direction, the simulation
domain is limited to a 2D domain, ðx; zÞ 2 ½a; b� � ½0; 1�, including the two oxide layers and parts of the source
and the drain regions. The source and the drain are modeled by highly doped n+-regions, whereas the Si-chan-
nel is assumed to be undoped (1016 cm�3 residual doping level).

We account in this model for the anisotropic crystal structure of Si, illustrated by six equivalent conduction
band ellipsoids (see Fig. 2). This gives rise to two different effective masses, the longitudinal heavy effective
mass ml ¼ 0:98 � me and the transversal light effective mass mt ¼ 0:19 � me, where me stands for the electron
rest mass. Note that as the oxide layer is included into the simulated domain, the effective masses depend
on the variable z.

Let us give now a brief and necessary overview of the SDM method, introduced in [7]. This overview shall
help to understand better the here proposed extension SDM/WKB, which is the essence of this work and is
based on the WKB approximation [6].

2.1. The SDM method

The coupled Schrödinger–Poisson equation is the most appropriate model to describe the quantum, ballis-
tic electron transport. Due to the non-linearity, an iterative method (Gummel iteration) will be used for the
resolution of this system, consisting of two blocs: the resolution of the Schrödinger equation and the resolu-
tion of the Poisson equation.

Quantum mechanically the electron evolution is described by means of the stationary Schrödinger equation
ðH � qV ðx; zÞÞWEðx; y; zÞ ¼ EWEðx; y; zÞ; ð2:1Þ

with ðx; y; zÞ 2 ½a; b� � R� ½0; 1� and where H is the Hamiltonian, defined by
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Fig. 2. The six equivalent conduction band ellipsoids of Si.
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We denoted by WE the complex-valued wave function, depending on the electron injection energy E. Further-
more, �h is the Planck constant, q the elementary electron charge and mx, my, mz are the z-dependent effective
masses in the x-, y- respect. z-direction. The electrostatic potential V depends only on the confinement and the
transport direction and is split into a given exterior potential Ve, and a self-consistent one Vs. The self-consis-
tent potential is solution of the Poisson equation
�DV sðx; zÞ ¼ �qnðx; zÞ;
onV sða; �Þ ¼ onV sðb; �Þ ¼ 0;

V sð�; 0Þ ¼ V 0
g; V sð�; 1Þ ¼ V 1

g;

8><>: ð2:3Þ
where on denotes the normal derivative to the boundary and V 0
g; V 1

g are the applied gate voltages. The Neu-
mann boundary conditions at the device/lead interface are more appropriate in ballistic devices than the
Dirichlet boundary conditions, in order to ensure the charge neutrality in the leads. The electron density n

is derived on its turn from the wave function WE, as follows:
n ¼
Z
jWEðx; y; zÞj2fFDðEÞ dE; ð2:4Þ
with fFD the Fermi–Dirac distribution function. The exact expression is given in (2.15) and (2.16).
Due to the translational invariance of the problem in the y-direction, the wave function WE can be decom-

posed as
WEðx; y; zÞ ¼ eiky yw�ðx; zÞ with E ¼ �þ ð�hkyÞ2

2my
; ð2:5Þ
where w� is solution of the 2D Schrödinger equation in ½a; b� � ½0; 1�
� �h2
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� qV ðx; zÞw�ðx; zÞ ¼ �w�ðx; zÞ: ð2:6Þ
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We denoted by ky the wave vector in the y-direction and by my the mean value of my over the whole ðx; zÞ-
domain, with w� as weight function
my ½w�� :¼
R b

a

R 1

0 myðzÞjw�ðx; zÞj
2 dz dxR b

a

R 1

0
jw�ðx; zÞj

2 dz dx
: ð2:7Þ
The resolution of the coupled Schrödinger–Poisson system (2.3)–(2.6) by means of standard variational meth-
ods (FEM) was the subject of several papers [18,8], but is numerically very expensive. The SDM method,
introduced in [7], was proposed in order to reduce the numerical cost for the resolution of the 2D Schrödinger
equation (2.6). This method replaces the resolution of the full 2D Schrödinger equation by the resolution of
1D problems in the confinement direction and 1D Schrödinger equations in the transport direction, both
directions remaining still coupled. In other words, it consists in expanding w� in the L2

z ð0; 1Þ orthonormal basis
fviðz; xÞg as
w�ðx; zÞ ¼
X

i

ui
�ðxÞviðz; xÞ; ð2:8Þ
where the transversal wave functions vi are solutions of the 1D eigenvalue problem in the confinement direc-
tion z
� �h2

2
o
oz

1
mzðzÞ

o
oz viðz; xÞ

� �
� qV ðx; zÞviðz; xÞ ¼ EiðxÞviðz; xÞ;

við�; xÞ 2 H 1
0ð0; 1Þ;

R 1

0 viðz; xÞvjðz; xÞ dz ¼ dij;

8<: ð2:9Þ
and the longitudinal wave functions ui
� are the solutions of the coupled 1D Schrödinger equations in the trans-

port direction x
� d2

dx2 ui
�ðxÞ � 2

P1
j¼1

aijðxÞ d
dx uj

�ðxÞ �
P1
j¼1

bijðxÞ þ 2
�h2 cijðxÞð�� EjðxÞÞ

� �
uj
�ðxÞ ¼ 0

þopen boundary conditions:

8<: ð2:10Þ
The index i, called transversal mode, indicates the different subbands. Ei and vi represent the potential energy
and the transversal wave function of the electrons belonging to the ith sub-band. The coupling terms between
the different subbands, aij, bij and cij, are given by
aijðxÞ :¼
Z 1

0

viðz; xÞ o

ox
vjðz; xÞ dz; ð2:11Þ

bijðxÞ :¼
Z 1

0

viðz; xÞ o
2

ox2
vjðz; xÞ dz; ð2:12Þ

cijðxÞ :¼
Z 1

0

mxðzÞviðz; xÞvjðz; xÞ dz: ð2:13Þ
Both Eqs. (2.9) and (2.10) are solved, in the SDM method, by standard finite element methods. In the next
section, we will show that considerable gain in simulation time can be obtained by using instead of the stan-
dard FEM, a ‘‘WKB finite element method’’ (based on a WKB approach) for the resolution of the 1D equa-
tions (2.10).

The open boundary conditions completing the Schrödinger equation (2.10) are calculated by assuming that
the potential is only dependent on the variable z outside the device, in the two electron leads (thermal equi-
librium condition). The thus obtained plane wave solutions in the leads are linked via continuity conditions
with the solutions inside the channel, giving rise to the following so-called open boundary conditions (cur-
rent-carrying conditions) [14,19]
d
dx ui

�ðaÞ ¼ ika
x;ið2aa

i;� � ui
�ðaÞÞdi6Iað�Þ þ ka

x;iu
i
�ðaÞdi>Iað�Þ;

d
dx ui

�ðbÞ ¼ �ikb
x;ið2ab

i;� � ui
�ðbÞÞdi6Ibð�Þ � kb

x;iu
i
�ðbÞdi>Ibð�Þ;

(
ð2:14Þ
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where ar
i;� denotes the amplitude of the incoming wave, penetrating the device from the source r = a or from

the drain r = b, in the ith transversal mode and with the injection energy �. The corresponding longitudinal
wave vector kr

x;i is given by
kr
x;ið�Þ :¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mxð�� EiðrÞÞ

p
�h

;

where mx stands for the mean value of the effective mass mx, defined by
mx½við�; rÞ� :¼
Z 1

0

mxðzÞjviðz; rÞj2 dz:
We have chosen the transversal wave function as weight, to account for the nonuniform electron distribution
in the z-direction. Moreover, Irð�Þ is the number of propagating modes
Irð�Þ :¼ supfi 2 N=� > EiðrÞg:

In other words, the boundary conditions (2.14) express the fact that a wave coming from a reservoir and pe-
netrating the device at x = a or x = b is partially reflected and transmitted by the potential barrier. The trans-
mitted part can be an evanescent wave. We shall denote in the following the solution of (2.10), (2.14)
corresponding to one incoming wave from the reservoir r0, in the transversal mode i0, with the energy �
and amplitude one by ur0;i0;� and the corresponding 2D wave by wr0;i0;�. In this case we have for the amplitude
ar

i;� ¼ di;i0dr;r0
. The electron density for a given effective mass configuration is now given as the superposition of

densities of these scattering states
nmx;my ;mzðx; zÞ ¼ 2
X

r0¼a;b

X1
i0¼1

Z 1

0

jwr0;i0;�ðx; zÞj
2

Z 1

�1
fFDðE; lr0

Þ dky

2p

� �
dkx

2p
; ð2:15Þ
where the Fermi–Dirac distribution function fFD characterizes the electron injection in the device and is given
by the formula
fFDðE; lr0
Þ :¼ 1

1þ exp
E�qlr0

kBT

:

The electron temperature is denoted by T, kB is the Boltzmann constant and the chemical potential lr0
is

deduced from
lr0
¼ l� V r0

;

with l the chemical potential at equilibrium, when no drain–source voltage VDS is applied, and V r0
is the applied

potential at x ¼ r0. The factor 2 in (2.15) comes from the Pauli principle. The energy-wavevector relations are
�ðr0; i0; kxÞ ¼ Ei0ðr0Þ þ
ð�hkxÞ2

2mx
; Eðr0; i0; kx; kyÞ ¼ Eð�; kyÞ ¼ �þ

ð�hkyÞ2

2my
:

Knowledge of the total electron density, defined as the sum of the contributions corresponding to the different
effective mass configurations
nðx; zÞ ¼ 2ðnmt;mt;ml
þ nmt;ml ;mt þ nml ;mt;mtÞ; ð2:16Þ
will now allow the potential to be calculated by solving (2.3) and to restart the Schrödinger–Poisson iteration.
Once the Schrödinger–Poisson iteration is accomplished, the electron current is computed as
jmx;my ;mz
ðx; zÞ ¼ 2

X
r0¼a;b

X1
i0¼1

Z 1

0

q�h
mx

Imfwr0;i0;�ðx; zÞrwr0;i0;�ðx; zÞg
Z 1

�1
fFDðE; lr0

Þ dky

2p

� �
dkx

2p
; ð2:17Þ
and, in the same manner, the total current is given by
jðx; zÞ ¼ 2ðjmt;mt;ml
þ jmt;ml ;mt

þ jml ;mt;mt
Þ: ð2:18Þ
Due to the fact that at a fixed temperature the probability to find an electron at high energies is insignificant,
we shall take into account in the numerical approximation only a finite number of transversal modes, denoted
by M, such that the index i0 runs over i0 ¼ 1; . . . ;M in (2.15) and (2.17).
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The advantage of the SDM method is that it reduces the initial 2D Schrödinger equation (2.6) to the
resolution of 1D eigenvalue problems in the confined direction (2.9) and many 1D Schrödinger equations
projected on the transport direction (2.10). Thus the size of the linear system to be solved at the end is
reduced from Nx � Nz for the initial 2D model to essentially N x �M for the SDM method, where Nx

and Nz are the number of grid points in the transport respectively confined direction, and M is the num-
ber of transversal modes taken into consideration. This leads to a considerable gain in the simulation
time.

To summarize this method, Fig. 3 presents a block diagram with the various levels of computation.
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2.2. The WKB hat functions – the SDM/WKB method

The new and essential part of our work is presented in this section, introducing the SDM/WKB method.
To reduce once more the numerical cost of the simulation, we improved the previous SDM model through
the use of WKB techniques. In the following we call this model SDM/WKB. The idea behind is to accel-
erate the resolution of the 1D Schrödinger equation (2.10), (2.14) by reducing the number of grid points in
the transport direction. In this manner we will achieve an important gain in the computational time, as the
1D Schrödinger equation has to be solved several times, one for each value � of the discretized energy spec-
trum. For this remark that the high energy wave functions are strongly oscillating, and as such a refined
mesh size is needed for the SDM model to accurately account for these functions (‘‘10 degrees of freedom’’-
rule). Indeed, the SDM approach uses finite elements, which consist in connecting nodal points by piece-
wise linear or polynomial approximation functions. The basic idea of the SDM/WKB method is that rather
than using polynomial interpolation functions, oscillating interpolation functions are used, which incorpo-
rate a priori knowledge about the solution. Due to the fact that the frequency of these oscillating functions
is close to that of the wave-function itself, this method permits to obtain accurate results with much coarser
grids. The oscillating interpolation functions are deduced by a WKB Ansatz and will be called WKB hat
functions.

Starting from the coupled 1D Schrödinger equations (2.10) and considering only a finite number M of sub-
bands, we can write this system under vectorial form as
��h2U00ðxÞ � 2�h2AðxÞU0ðxÞ � �h2BðxÞUðxÞ � CðxÞUðxÞ ¼ 0; x 2 ½a; b�; ð2:19Þ

with U :¼ ðui

�Þ
M
i¼1; A :¼ ðaijÞMi;j¼1; B :¼ ðbijÞMi;j¼1 and C :¼ ð2cijð�� EjÞÞMi;j¼1. The idea is to seek for an approxi-

mate solution of (2.19) in the form of a plane wave with a phase function S and modulated by an amplitude
function~e as follows:
UðxÞ ¼ e
i
�hSðxÞ~eðxÞ with ~eðxÞ ¼ aðxÞ~uðxÞ where j~uðxÞj ¼ 1 8x; 8�h: ð2:20Þ
Inserting this Ansatz in (2.19) and neglecting terms in �h2 yields
�2i�hS0a0~u� 2i�hS 0a~u0 � i�hS 00a~uþ ðS0Þ2a~u� 2i�hS 0aA~u� aC~u ¼ 0:
The resolution of this equation is possible, if we consider the decomposition
�2i�hS 0~u0 þ ðS0Þ2~u� 2i�hS 0A~u� C~u ¼ 0; 2S0a0 þ S00a ¼ 0: ð2:21Þ
Notice that in the present 2D case, S and~e will depend on �h, which differs from the pure 1D case, investigated
in [6]. The second equation of system (2.21) can be rewritten as
ðS0�hða�hÞ2Þ0 ¼ 0;
implying thus immediately for S0�h 6¼ 0
a�hðxÞ ¼
cffiffiffiffiffiffiffiffiffiffiffiffiffi
jS0�hðxÞj

p ; c 2 C:
In order to solve the first equation, we expand ~u�h and S�h in powers of �h
~u�hðxÞ ¼~u0ðxÞ þ �h~u1ðxÞ þ � � � ; S�hðxÞ ¼ S0ðxÞ þ �hS1ðxÞ þ � � � : ð2:22Þ

Substituting these expansions in (2.21) and comparing the terms of the same order in �h, results in a sequence of
equations to be solved to determine~u0

�h;~u
1
�h; S

0
�h; S

1
�h; . . .. Limiting us to the zeroth and first order terms, we obtain

the equations
d

dx
S0

� �2

ðxÞu0ðxÞ ¼ CðxÞu0ðxÞ; ð2:23Þ

� 2iS00u00 þ ðS00Þ2u1 þ 2S00S10u0 � 2iS00Au0 � Cu1 ¼ 0: ð2:24Þ
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For notational simplicity we omitted the index �h and the vector arrows. The matrix C is close to a real, diag-
onal matrix. This follows from (2.13) and the fact that vi 2 H 1

0ð0; 1Þ are orthogonal functions. From the per-
turbation theory, we deduce that C is diagonalizable and has M simple, real eigenvalues kjðxÞ. Denote by
u0

j ðxÞ 2 RM the corresponding eigenvectors with ju0
j ðxÞj ¼ 1. Then we get from (2.23)
ðS0
j Þ
0ðxÞ ¼

�
ffiffiffiffiffiffiffiffiffiffi
kjðxÞ

p
for kjðxÞP 0;

�i
ffiffiffiffiffiffiffiffiffiffiffiffiffi
jkjðxÞj

p
for kjðxÞ < 0;

(
j ¼ 1; . . . ;M :
Let us denote by P the transformation matrix P ðxÞ :¼ ðu0
1ðxÞj � � � ju0

MðxÞÞ, such that P�1CP is the diagonal ma-
trix containing the eigenvalues of C. Consider next a fixed transversal mode l 2 f1; . . . ;Mg and let us compute
the first order terms S1

l ; u
1
l corresponding to S0

l and u0
l . For this multiply (2.24) by P�1, take the lth coordinate

and use (2.23). This leads to
S10

l ðxÞ ¼ i~al;lðxÞ þ iðP�1u00

l ðxÞÞl;

where ~A ¼ P�1AP . Taking the jth coordinate, with j 6¼ l, we get
ðP�1u1
l ÞjðxÞ ¼ 2i

S00

l ðxÞ
klðxÞ � kjðxÞ

½~ajlðxÞ þ ðP�1u00

l Þj�:
To deduce u1
l , remark that
u1
l ¼

XM

j¼1

sju0
j with sj :¼ ðP�1u1

l Þj:
It remains thus to determine sl. For this we shall take advantage of u0
l �Reu1

l ¼ 0, fact which follows from the
property ju�hðxÞj ¼ 1 8�h. This implies
Resl ¼ 2ImðS00

l Þ
X
j 6¼l

1

klðxÞ � kjðxÞ
½~ajlðxÞ þ ðP�1u00

l Þj�ðu0
j � u0

l Þ:
The imaginary part of sl can be chosen arbitrary, leading thus to the expression of u1
l

u1
l ðxÞ ¼ 2iS00

l

X
j 6¼l

1

klðxÞ � kjðxÞ
½~ajlðxÞ þ ðP�1u00

l Þj�ðu0
j � ðu0

j � u0
l Þu0

l Þ:
The numerical results however have shown that this part of the amplitude function increases only the simu-
lation cost, without any gain in the accuracy of the approximate solution. For this reason and to simplify the
following calculus, we shall omit u1 and stop the expansion (2.22) at the zeroth order term u0.

So far we can write an approximate solution of Eq. (2.19) in the form
UðxÞ ¼ T ðxÞnðxÞ; ð2:25Þ

with
T ðxÞ ¼ ðu0
1ðxÞe

�
R x

x0
½~a1;1ðtÞþðP�1u0

1

0Þ1� dtj � � � ju0
MðxÞe

�
R x

x0
½~aM ;M ðtÞþðP�1u0

M
0ÞM � dtÞ;
and
njðxÞ ¼

cjffiffiffiffiffiffiffi
kjðxÞ4
p e

i
�h

R x

x0

ffiffiffiffiffiffiffi
kjðtÞ
p

dt þ djffiffiffiffiffiffiffi
kjðxÞ4
p e

� i
�h

R x

x0

ffiffiffiffiffiffiffi
kjðtÞ
p

dt
for kjð�Þ > d;

cjffiffiffiffiffiffiffiffiffi
jkjðxÞj4
p e

1
�h

R x

x0

ffiffiffiffiffiffiffiffi
jkjðtÞj
p

dt þ djffiffiffiffiffiffiffiffiffi
jkjðxÞj4
p e

�1
�h

R x

x0

ffiffiffiffiffiffiffiffi
jkjðtÞj
p

dt
for kjð�Þ < �d;

8>><>>: ð2:26Þ
where cj; dj 2 C are constants and x0 is a reference point. These expressions are not valid close to a turning
point kjðxÞ ¼ 0. A threshold value d > 0 was therefore introduced and the above solutions are expressed in
intervals far from the turning points. This procedure will require a matching of WKB solutions, which are,
each of them, valid in their respective regions.



N. Ben Abdallah et al. / Journal of Computational Physics 225 (2007) 74–99 83
As you can see from (2.26), we have essentially oscillating solutions in classically allowed regions and expo-
nential solutions in classically forbidden regions. With the help of this formula, we shall construct now basis
functions, which incorporate a priori knowledge about the solution. The aim is to create interpolation spaces
with better approximation properties than the linear interpolation spaces, usually used in standard finite ele-
ment methods. For this, let us discretize the interval ½a; b� of the transport direction into several intervals
In :¼ ðxn; xnþ1Þ. By straightforward algebraic computations, formula (2.26) can be rewritten in In in the form
njðxÞ ¼ wj
nðxÞn

n
j þ vj

nðxÞn
nþ1
j ; nn

j :¼ njðxnÞ ð2:27Þ
with
wj
nðxÞ :¼

aj
nðxÞf j

n ðxÞ for jkjjP d;
xnþ1�x
xnþ1�xn

for jkjj < d;

(
vj

nðxÞ :¼
bj

nðxÞf
j
nþ1ðxÞ for jkjjP d;

x�xn
xnþ1�xn

for jkjj < d;

(

aj
nðxÞ :¼

� sin rj
nþ1
ðxÞ

sin cj
n

for kj P d;

� sinh rj
nþ1
ðxÞ

sinh cj
n

for kj 6 �d;

8><>: bj
nðxÞ :¼

sin rj
nðxÞ

sin cj
n

for kj P d;

sinh rj
nðxÞ

sinh cj
n

for kj 6 �d;

8<:
rj

nðxÞ :¼ 1

�h

Z x

xn

ffiffiffiffiffiffiffiffiffiffiffiffi
jkjðtÞj

q
dt; cj

n :¼ 1

�h

Z xnþ1

xn

ffiffiffiffiffiffiffiffiffiffiffiffi
jkjðtÞj

q
dt; f j

n ðxÞ :¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jkjðxnÞj
jkjðxÞj

4

s
:

In the neighborhood of a turning point, we have matched the different approximation functions by linear
interpolation functions. This can be explained by looking at the pure 1D case, where the second derivative
of the wave function u00 vanishes at a turning point, implying thus a linear evolution of u close to this point.
The functions aj

n and bj
n are what we call WKB basis or hat functions. These are highly oscillating functions,

with a frequency close to that of the wave function, which is given by
k�;iðxÞ ¼
2p�hffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2mxð�� EiðxÞÞ
p :
In the limit Dx� k they reduce to the usual linear interpolation functions. Fig. 4 compares a ‘‘WKB hat-func-
tion’’ and a standard linear hat-function.

Thus we posses at this stage an appropriate finite dimensional approximation space. Projecting the wave-
function on this space, by means of (2.25) and (2.27), and choosing a discretization method for the Schröding-
er equation, permits to get a scheme for the unknown values nn. For example, a finite element method can be
chosen as discretization method, as done in [21]. In the present paper, we discretized the Schrödinger equation
by means of the following ‘‘finite volume method’’, deduced by integrating (2.19) over ðxi�1=2; xiþ1=2Þ
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Fig. 4. A WKB hat-function and a standard linear hat-function on an irregular grid.
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U0ðxnþ1=2Þ � U0ðxn�1=2Þ ¼ �2

Z xnþ1=2

xn�1=2

AðxÞU0ðxÞ dx�
Z xnþ1=2

xn�1=2

BðxÞ þ 1

�h2
CðxÞ

� �
UðxÞ dx: ð2:28Þ
Replacing in this equation U and its derivatives by the projections in the WKB approximation space yields a
numerical scheme in the unknowns nn

j . Close to the boundary we consider the intervals ½x1; x1þ1=2�, respectively
½xN�1=2; xN � and include the following boundary conditions into the corresponding expressions
U0ðx1Þ ¼ DUðx1Þ þ va;

U0ðxN Þ ¼ EUðxN Þ þ vb;

�

with
D :¼

�ika
x;1d16Ia þ ka

x;1d1>Ia 0

. .
.

0 �ika
x;MdM6Ia þ ka

x;MdM>Ia

0BB@
1CCA; va :¼ 2iðka

x;ia
a
i;�Þ

M
i¼1;
and
E :¼

ikb
x;1d16Ib � kb

x;1d1>Ib 0

. .
.

0 ikb
x;MdM6Ib � kb

x;MdM>Ib

0BB@
1CCA; vb :¼ �2iðkb

x;ia
b
i;�Þ

M
i¼1:
The resulting block tridiagonal linear system is solved by standard methods.
3. Numerical investigation of the SDM/WKB method

3.1. Comparison of the two methods: SDM and SDM/WKB

In order to show the efficiency of the new method SDM/WKB, an extensive comparison with the SDM
method has been performed for the case of a MOSFET with a 5 nm large and 10 nm long channel. An analytic
solution of the non-linear Schrödinger–Poisson system (2.1)–(2.4) does not exist. Nevertheless a reference solu-
tion is computed by means of a standard finite element method on a very fine mesh (N x ¼ 540;N z ¼ 210). This
solution can be seen as trustful (somehow exact), validated by several papers [18,8]. The efficiency of the SDM
method compared to standard methods was shown in [7] and is not the objective of this work. The aim of the
present section is to show the power of the new method as compared to the SDM method. The results obtained
with both methods, SDM and SDM/WKB, on various fine/coarse meshes are thus investigated according to
accuracy (with respect to the reference solution) and simulation time.

In Fig. 5a a plot of the sheet charge density versus x obtained with the SDM/WKB method on a grid of
Nx � Nz ¼ 13� 60 points (full line) is compared to the analogous plot of the reference solution (broken line).
Fig. 5b represents the corresponding cross-sections of the potential energy along the channel, near the Si/SiO2

interface. As one can observe that the agreement between full lines and broken lines is satisfactory, the SDM/
WKB method reproduces quite well the macroscopic quantities, as the charge density and the potential energy.

To illustrate more precisely the efficiency of the SDM/WKB method, we plot in Fig. 6 the pointwise relative
errors of both methods (with respect to the reference solution) and this for the sheet charge density and the
potential energy represented above. The grids chosen for the presented results consist of 13� 60 points for the
SDM/WKB method and 72� 60 points for SDM. These grids were selected in such a manner to get similar
relative errors for the two different methods, more or less 5% in the L1 norm, so that we can compare the
corresponding simulation times. We observe that for approximately the same precision, the simulation time
is significantly reduced with the SDM/WKB method by a factor of about 2 compared to SDM. More details
about the gain in the simulation time can be extracted from Table 1. The total simulation time corresponds to
the computation of a current–voltage characteristic for a fixed gate potential VGS, that means the Schrödinger–
Poisson system is solved several times, for 11 different drain–source potentials VDS = 0 V, . . . , 0.5 V.
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It is of interest to notice that the most time consuming part of the simulation is the resolution of the total
1D Schrödinger equation. This is a consequence of the fact that the 1D longitudinal Schrödinger equation
(2.10) has to be solved several times, one for each injection configuration ðj0; r0; �Þ. Thus it is not surprising
that reducing via the WKB approximation the computational time for the resolution of a single Schrödinger
equation, leads to a considerable gain in the total simulation time.

Let us now compare the accuracy and the simulation time of the two considered methods for the same
mesh. We represent in the following two figures the pointwise relative errors for the surfacic density obtained
with the SDM/WKB method (Fig. 7a), respectively, with the SDM method (Fig. 7b) for various meshes, the
relative error being computed with respect to the reference solution. Table 2 gives the corresponding total sim-
ulation times and mean relative errors for the two methods, dependent on the number of grid points in the
x-direction. For example, on a mesh of 13� 60 points the SDM/WKB method is 8 times more accurate in the
L1 norm than the SDM method (resp. 5 times more accurate in the L1 norm), but 3 times less rapid. Generally
we can say that for the same mesh, the SDM method is less accurate but faster than the SDM/WKB method.

To conclude, the WKB approximation has been successfully used in a SDM method to further reduce com-
putation time and allow extensive simulation of 2D quantum transport in nanoscale MOSFETs. We per-
formed in this section only a numerical validation of the SDM/WKB method, a physical discussion being
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Table 1
Comparison of the simulation times of SDM and SDM/WKB

Nbr. grid pts. in x Total sim.
time

Poisson
equation

Eigenval.
problem

Schrödinger 1D
1 · (j0; r0; kx)

Schrödinger 1D
total

SDM 72 89 min 32 s 0.04 s 0.01 s 0.05 s 86 s
WKB 13 46 min 28 s 0.02 s 0.01 s 0.03 s 42 s
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Fig. 7. Relative errors for the sheet charge density obtained with the two methods SDM/WKB (a) and SDM (b) as compared to the
reference solution, for different meshes and the potential configuration V GS ¼ 0:1 V, V DS ¼ 0:1 V.
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pursued in the last section. A rigorous numerical analysis of the method is deferred to future work, due to its
complexity and importance. The 1D oscillating case is treated in [21], giving an error estimate in terms of the
mesh size h and independent on the wavelength k. The 1D general case is in progress [2] and finally the full 2D
case will be the objective of an ulterior paper.

3.2. Some numerical considerations and problems

We shall discuss in this section some points that have to be considered with a certain attention in the imple-
mentation of the SDM/WKB method. Other interesting remarks concerning the resolution of the Poisson
equation, the linearization of the coupled Schrödinger–Poisson system by means of the Gummel iteration,
the initial guess of the electrostatic potential, etc. can be found in [7], since this steps of the algorithm are com-
mon to both SDM and SDM/WKB models.

(1) Table 1 shows that a mesh of 13 grid points in the transport direction is used for the resolution of the 1D
coupled Schrödinger equations (2.10). However, in order to compute accurately the derivatives of the trans-
versal wave-functions vi with respect to x, needed for the computation of the coupling terms (2.11), (2.12) and
the current density (2.17), we have to introduce a second mesh in the transport direction, which is much finer.
Thus we are let to use two different discretizations of this direction. The eigenvalue problem (2.9) shall be
solved for each ‘‘parameter’’ x belonging to the fine grid (43 grid points in our algorithm), whereas the Schrö-
Table 2
Comparison of the total simulation times and mean relative errors of SDM and SDM/WKB for different meshes

Nx � Nz Total sim. time Mean rel. error Total sim. time Mean rel. error
SDM/WKB SDM/WKB SDM SDM

13� 60 46 min 28 s 0.0203 17 min 21 s 0.1009
43� 60 155 min 58 s 0.0101 35 min 57 s 0.0339
72� 60 305 min 3 s 0.0067 89 min 32 s 0.0255
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dinger equations (2.10) are solved on the coarser grid (13 grid points). It remains to interpolate the results
from the coarse grid to the fine one. For this, we remark that once we have solved the tridiagonal linear system
corresponding to the discretization scheme (2.28), in order to deduce the values nn at the coarse grid nodal
points, we can determine by means of (2.25) and (2.27) the values of the wave-function and of its derivatives
anywhere in the interior of a coarse grid interval. In this manner we obtain the charge density and conse-
quently the electrostatic potential on the fine mesh in order to restart the Schrödinger–Poisson iteration. This
‘‘multi-grid’’ procedure enables to exploit the advantages of the WKB approximation for the resolution of
(2.10), which were mentioned in the previous section, without loosing at the same time on precision for other
computations, as for example for the derivation of the transversal wave-functions with respect to x. Note,
moreover, that the eigenvalue problem (2.9) is solved only few times in a Schrödinger–Poisson loop (two times
for a fixed parameter x), in contrast to the 1D Schrödinger equations, which have to be solved several times,
one for each electron injection energy. For this reason, the just described procedure does not increase much
the computational cost.

(2) The choice of the ‘‘multi-grid’’ strategy in the transport direction, mentioned in the first point, has also
another reason. The fine grid is not only necessary for the derivation of the transversal wave-functions vi, but
also for the regularity with respect to the x-direction of the first two transversal waves vml

1 and vml
2 , correspond-

ing to the heavy effective mass ml in the confinement direction.
Indeed the particularity of the first two subbands associated to ml is that they are very close (see Fig. 11).

Consequently, the computer treats them as a double eigenvalue, such that the corresponding eigenvectors vml
1

and vml
2 are chosen arbitrarily as orthonormal eigenvectors of a 2D eigenspace. These so obtained eigenvectors

can be rather different from the correct ones, corresponding to the two separate eigenvalues. In [7] a numerical
procedure was introduced to cope with this failure. This procedure consists in the following steps. Starting

from a point xj with given vml
1 ðz; xjÞ and vml

2 ðz; xjÞ, we compute independently cvml
1 ðz; xjþ1Þ and cvml

2 ðz; xjþ1Þ by

solving (2.9) at xjþ1. Then we rotate these so obtained eigenvectors in such a manner to get the regular

wave-functions vml
1 and vml

2 in the x-direction. In other words, we obtain the new vml
1 ðz; xjþ1Þ and vml

2 ðz; xjþ1Þ
by the following rotation:
v1ðz; xjþ1Þ
v2ðz; xjþ1Þ

� �
¼

cosðhÞ sinðhÞ
� sinðhÞ cosðhÞ

� � bv1ðz; xjþ1Þbv2ðz; xjþ1Þ

� �
;

with the rotation angle h chosen so that v1ðz; xjþ1Þ (resp. v2ðz; xjþ1Þ) is close to v1ðz; xjÞ (resp. v2ðz; xjÞ). This
leads to the condition
Z 1

0

v1ðz; xjþ1Þv2ðz; xjÞ dz ¼ 0;
implying
tanðhÞ ¼ �
R 1

0
bv1ðz; xjþ1Þv2ðz; xjÞ dzR 1

0
bv2ðz; xjþ1Þv2ðz; xjÞ dz

:

It is now obvious that in order to get a precise rotation angle h, we need a fine mesh in the x-direction.
Another point to be treated with care in the just recalled numerical procedure is the choice of the starting

point x*. It is convenient to begin at a point x*, at which the first two eigenvalues Eml
1 ðx�Þ and Eml

2 ðx�Þ are the
most distant possible. This occurs rather in the middle of the interval, as can be observed in Fig. 11, so that
starting from this point, we shall carry out the rotation technique stepwise to the left and to the right.

(3) This point concerns the truncation of the injection energy integral in the calculus of the charge density
(2.15) and current density (2.17).The upper limit of the electron injection energy � is fixed at a temperature of
T = 300 K to Esup ¼ Er

F þ 4kBT for gate potentials V GS P 0 V. Here we denoted by Er
F the Fermi level of the

source reservoir if r = a or drain reservoir if r = b. In the case of V GS P 0 V, the number of particles injected
with an energy superior to Esup is very small compared to the number of particles contributing to the electron
current and can thus be neglected. This comes from the fact, that the Fermi–Dirac statistic is very small if
E � EF > 4kBT . Indeed, we have for E � EF > 4kBT



Table 3
Upper electron injection energy limits for different gate potentials

VGS 0 V �0.1 V �0.2 V �0.3 V

Esup Er
F þ 4kBT Er

F þ 6kBT Er
F þ 8kBT Er

F þ 10kBT
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fFDðEÞ ¼
1

1þ exp E�EF

kBT

6
1

1þ e4
	 e�4 ¼ 1:8� 10�2 � 1:
However, for gate potentials inferior to 0 V the number of particles contributing to the electron transport by
thermionic emission or quantum tunneling is rather small so that the contribution of the particles injected with
an energy superior to Er

F þ 4kBT becomes significant. The size of the injection energy interval has thus to be
adjusted to the gate potential and it is necessary to consider larger injection energy intervals for V GS < 0 V.
Numerically, we determined the upper energy limit for a fixed V GS < 0 V, by comparing the obtained currents
(at V DS ¼ 0:5 V) for different Esup. The upper limit Esup is increased until the changes in the current become
negligible (relative error of 5%). The values determined by this manner are shown in Table 3.

As an example, Fig. 8 illustrates the current versus gate potential characteristic obtained with a fixed max-
imal injection energy of Esup ¼ Er

F þ 4kBT (broken line) and that one obtained with the values of Table 3 (full
line). Remark that the difference between the two characteristics is significant.

It is important to remark that increasing the maximal electron injection energy, one has to verify if the num-
ber of subbands taken into consideration is large enough. Tests have shown that the choice of M = 12 sub-
bands is sufficient even for Esup ¼ Er

F þ 10kBT .

4. Discussion of the numerical results obtained with SDM/WKB

The aim of this last section is to analyze from a physical point of view the numerical results obtained with
SDM/WKB. Experimental results are at present not available for such ultra-small devices of 10 nm channel
length. Advances in lithography permitted to shrunken down the channel dimensions to 20–30 nm, but there is
still some work to do. Comparable simulation results were generated by means of other methods, like the stan-
dard full 2D variational methods [18,8], the SDM method [7] or the Green’s function approach [24,27].

4.1. Parameters for the considered MOSFET

The various parameters describing the structure of the simulated double gate MOSFET, illustrated in
Fig. 9, are presented in Table 4.



Table 4
Specifications of the modeled device

Parameter Value Parameter Value

Lx 18 nm ml 0.98 · me

Lz 12 nm, 7 nm, 5 nm mt 0.19 · me

LOX 1 nm T 300 K
LSi 10 nm, 5 nm, 3 nm n+ 1020 cm�3

LR 4 nm VGS �0:3; . . . ; 0:5 eV
LCH 10 nm VDS 0; . . . ; 0:5 eV
mSiO2

0.5 · me EC 3.15 eV
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Fig. 9. The DG NMOSFET.

N. Ben Abdallah et al. / Journal of Computational Physics 225 (2007) 74–99 89
4.2. Analysis of the 10 nm� 10 nm MOSFET

We present in this section the essential simulation results of the 10 nm · 10 nm MOSFET transistor,
obtained with the SDM/WKB model.

In the ballistic regime, the MOSFET schematically operates as follows (Fig. 10): Electrons are injected from
the two thermal equilibrium reservoirs (the source and the drain) across a potential energy barrier. Electrons
having an energy higher than this energy barrier are transmitted from the source to the drain or inversely by
thermionic emission, whereas electrons with a smaller energy can pass only by quantum mechanical tunneling.
The gate voltage modulates the height of this potential barrier.
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Fig. 10. Schematic mechanism of a MOSFET.
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Due to the anisotropic nature of the conduction band of Si, the energy discretization in the confined direc-
tion results in two sets of subbands, associated to two different effective mass values. The lower subbands (and
thus firstly populated) are associated with the heavy longitudinal effective mass ml in the confined direction z,
and the higher ones are associated with the lighter transversal mass mt in direction z (Fig. 11).

Note that the subbands are closely spaced if the Silicon film is thick, and as such several subbands have to
be taken into account in the model, in order to simulate correctly the electron transfer within the device. In
particular, the first two subbands associated to ml are very close, fact which requires a slightly different numer-
ical procedure for the determination of the corresponding transversal waves vml

1 ; v
ml
2 (see Section 3 and [7]).

Fig. 12 illustrates the profile of the first mt-subband for different drain–source, respectively, different gate
voltages.

Fig. 13 represents the electron density and potential energy of the examined MOSFET (V DS ¼ 0:5 V,
V GS ¼ 0:1 V). The energy potential barrier between source and channel is visible. With a 10 nm Si thickness,
the lower potential energy near the Si/SiO2 interface induces the formation of two inversion layers, where the
electron density is more raised. The gate potential VGS modulates the height of this barrier and thus the num-
ber of free electrons in the channel. For transistors with ultrathin Si-bodies (<3 nm), the two inversion layers
merge to a single one, as it will be discussed in Section 4.3.
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mt-subband.



Fig. 13. Electron density (left) and potential energy (right) for V DS ¼ 0:5 V and V GS ¼ 0:1 V.
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Fig. 14 shows cross-sections of the charge density and potential energy for various values of the drain–
source potential and for a fixed gate potential. Remark the influence of the drain–source potential on the
length of the potential barrier. As the drain bias voltage VDS increases, the source barrier shrinks not only
in height, measured by the DIBL (drain induced barrier lowering), but also in length. This implies a higher
contribution of the tunneling charge to the drain current IDS.

The current density is presented in Fig. 15. Note that the existence of the two channels close to the device/
oxide interface (double channel conduction) (Fig. 15 (right)). In Fig. 15 (left), which differs from the right fig-
ure by the value of the gate potential, one can observe the pinch-off point near the end of the channel. At this
point the electrostatic potential equals the saturation potential V sat ¼ V GS � V T, where VT is the threshold
voltage. In the region beyond this point conduction is moved from the interfaces to the volume of the film.
With the increase of the drain bias VDS, the pinch-off point moves towards the source.

It has been checked that the current given by
Fig. 14
variou
IDSðxÞ ¼
Z 1

0

jðx; zÞ �
1

0

� �
dz
–10 –8 –6 –4 –2 0 2 4 6 8 10
0

2

4

6

8

10

12

14
x 1025

X  (nm)

D
en

si
ty

  (
m

–3
)

V
DS

=0V

V
DS

=0.5V

V
GS

=0.1V

a

–10 –8 –6 –4 –2 0 2 4 6 8 10
–0.6

–0.5

–0.4

–0.3

–0.2

–0.1

0

0.1

X  (nm)

P
o

te
n

ti
al

 e
n

er
g

y 
 (

eV
) V

DS
=0V

V
DS

=0.1V

V
DS

=0.2V

V
DS

=0.3V

V
DS

=0.4V

V
DS

=0.5VV
GS

=0.1 V 

b

. Cross-sections of the electron density (a) respectively potential energy (b) at 1 nm from the interface Si/SiO2 for V GS ¼ 0:1 V and
s drain–source potentials VDS.



Fig. 15. Distribution of the current density for V GS ¼ 0:1 V and V DS ¼ 0:5 V (left) respectively V GS ¼ 0:5 V and V DS ¼ 0:5 V (right).
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is constant along the MOSFET. I–V characteristics are shown in Fig. 16. As expected with an aspect ratio of 1
between channel length and film thickness, rather large short channel effects are observed (large DIBL and low
gm/gd). As the channel length of the modeled device is rather short (<1 lm), the drain current IDS increases
slowly with IDS beyond the saturation value Isat, such that no saturation can be observed.

The repartition of the charge density, average velocity (Fig. 17) and current density (Fig. 18) between the
three valley orientations shows interesting features as both the spatial variations and the amplitudes are
affected by the valley orientations.

Electrons occupying the lower subbands (configuration mlz: electrons respond with the longitudinal effec-
tive mass in the direction z) are highly localized against the interface and are much more numerous, whereas
the electrons corresponding to the configurations mlx and mly are less confined and in smaller number than the
first ones. Due to the different effective masses in the transport direction, the electrons have also different
velocities. Electrons characterized by the heavy effective mass in the transport direction (configuration mlx)
are less rapid compared to those characterized by the light effective mass in this direction (configurations
mly and mlz). This results in a different contribution to current, both in absolute value and spatial distribution,
for the three valley orientations.

Fig. 19 illustrates how the average velocity increases with the applied drain–source potential VDS.
A 2D plot of the kinetic energy and average velocity (in the transport direction) is presented in Fig. 20.
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4.3. Influence of the silicon thickness

We will devote this section on the comparison of MOSFET devices with different body thicknesses.
Fig. 21 shows cross-sections of the charge density for three different body thicknesses. As the transistor

body gets thinner, the two inversion layers progressively merge into only one inversion region in the volume
of the silicon film (volume inversion). Although the peak density gets higher as body thickness decreases, the
integrated charge is reduced. This is consistent with the well known threshold shift induced by quantum
confinement.

For thinner films, the spacing between energy subbands increases so that fewer subbands need to be sim-
ulated. Fig. 22 shows the electron occupancy of the subbands for the three compared devices, where we
summed over the three valley orientations. It can be observed that in very thin devices a one subband approx-
imation is sufficiently accurate.

Finally, the influence of body thickness on I–V characteristics is shown in Fig. 23.
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Fig. 20. 2D plots representing the x-component of the electron kinetic energy (left) respectively average velocity (right), for V DS ¼ 0:5 V
and V GS ¼ 0:1 V.
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4.4. The tunneling effect

Analogous to standard full 2D variational methods, the two methods SDM/WKB and SDM have the attri-
bute of accounting for quantum effects in both directions, in the confinement as well as in the transport direc-
tion. They are therefore able to analyze tunneling effects between the source and the drain. For instance,
Fig. 24 shows how the energy spectrum of the electrons injected from the source in the first unprimed sub-
bands (ml in the confinement direction) evolves along the channel for a 5 nm · 10 nm device. This spectros-
copy has been done for a low VGS bias voltage and medium drain voltage. It shows that the leakage
current which flows through the device is strongly influenced by electrons which are tunneling through the
source/channel barrier. This tunneling current leads to a larger drain induced barrier lowering (DIBL), as
extracted from current voltage characteristics, compared to the internal barrier modulation by drain voltage.
In particular, the barrier lowering is of the order of 15 meV when the drain voltage increases from 0.2 V to
0.5 V. This leads, at a temperature of 300 K, to a current increase by a factor of 1.79. The transfer character-
istics show however a current variation of a factor of about 2.03. This discrepancy is due to the tunneling of
electrons through the source/channel barrier. These tunneling electrons bring a non negligible contribution to
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Fig. 24. Source-injected electron population (configuration mx ¼ ml) in log. scale and the tunneling effect beneath the potential barrier (full
line) for V DS ¼ 0:2 V and V GS ¼ 0:1 V.
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drain current compared to electrons injected thermionically above the barrier. Similar tunneling figures can be
found in [24].

4.5. A different device design

We present in this section the numerical results obtained with the SDM/WKB method applied on a trap-
ezoidal device design. The aim is to show the flexibility of SDM/WKB and to compare and analyze the per-
formances of different concept devices.

The geometry of the considered MOSFET transistor is represented in Fig. 25. The thickness of the
oxide layer is kept constant all along the structure and equal 1 nm. The channel length remains
unchanged, equal 10 nm, as for the previous device, whereas the channel width varies from 5 nm at the
source side to 3 nm at the drain side. The other parameters are conserved as for the rectangular MOS-
FET. The difference in the numerical algorithm consists in the fact that the width of the device is no more
constant and equal Lz, but depends on the x-coordinate, hence it is denoted by LzðxÞ. For each point x,
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Fig. 25. Schematic representation of the trapezoidal MOSFET device.



Fig. 26. Electron density (left) and potential energy (right) for V DS ¼ 0:2 V and V GS ¼ 0:1 V.
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the same number of grid points is taken in the confinement direction in the channel, giving thus rise to a
non-uniform grid.

Fig. 26 represents the electron density and the potential energy for the just described device. As expected,
the two inversion layers, which are formed at the source side, merge towards a single channel at the drain side.
Moreover, Fig. 27 (left) illustrates that the energy subbands get more and more distanced as they come closer
to the drain. This results in a preference of the electrons for the first subband in the proximity of the drain. In
fact, Fig. 27 (right) represents the electron occupancy of the first three subbands. It can be observed that the
electrons jump towards the first subband as they come nearer to the drain, that means to the narrower region
of the transistor.

Finally, the comparison of the characteristics of the considered trapezoidal device with that ones corre-
sponding to the rectangular MOSFETs of a Si thickness of 5 nm, respectively, 3 nm illustrates that the per-
formances of the trapezoidal device are placed between the two respective rectangular MOSFETs (see
Fig. 28).
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Fig. 27. Left: First two conduction energy subbands associated to ml, for V DS ¼ 0:2 V and V GS ¼ 0:1 V. Right: Percentage of the subband
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5. Conclusion

A quantum ballistic transport model, which combines two methods, the SDM method and the WKB
approximation, was introduced and investigated in this paper. The approach is based on the self-consistent
resolution of the Schrödinger–Poisson system with quantum transmitting boundary conditions and was
applied for the simulation of nanoscale double-gate MOSFETs. The present study has shown numerically
the efficiency of the SDM/WKB method as compared to SDM and to standard methods. Accurate results
have been obtained with significantly reduced computational time. A rigorous numerical analysis is postponed
to an ulterior work (see [2,21] for the first part).
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